

 Navigation

 	
 index

 	django-notification stable documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a docs/index.rst or docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright .
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	django-notification stable documentation

Index

 Copyright .
 Created using Sphinx 1.3.1.

 search.html

 Navigation

 		
 index

 		django-notification stable documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright .
 Created using Sphinx 1.3.1.

scoping.html

 Navigation

 		
 index

 		django-notification stable documentation »

Scoping Notifications

Sometimes you have a site that has groups or teams. Perhaps you are using
pinax-teams [https://github.com/pinax/pinax-teams/]. If this is the case you
likely want users who might be members of multiple teams to be able to set
their notification preferences on a per team or group basis.

You will need to to simply override NoticeSettingsView to provide your own
scoping object.

Override NoticeSettingsView

I think it’s best if we just demonstrate via code:

views.py
from pinax.notifications.views import NoticeSettingsView

class TeamNoticeSettingsView(NoticeSettingsView):

 @property
 def scoping(self):
 return self.request.team

Then override the url:

urls.py
from django.conf.urls import patterns, url

from .views import TeamNoticeSettingsView

urlpatterns = patterns(
 "",
 ...
 url(r"^notifications/settings/$", TeamNoticeSettingsView.as_view(), name="notification_notice_settings"),
)

 © Copyright .
 Created using Sphinx 1.3.1.

_static/up.png

settings.html

 Navigation

 		
 index

 		django-notification stable documentation »

Settings

The following allows you to specify the behavior of pinax-notifications in
your project. Please be aware of the native Django settings which can affect
the behavior of pinax-notification.

PINAX_NOTIFICATIONS_BACKENDS

Formerly, this setting was NOTIFICATION_BACKENDS.

Defaults to:

[
 ("email", "pinax.notifications.backends.email.EmailBackend"),
]

PINAX_USE_SSL

This is a proposed common setting across the Pinax ecosystem. It currently may
not be consistant across all apps.

Formerly, this setting was DEFAULT_HTTP_PROTOCOL and defaulted to http.

It now defaults to False.

This is used to specify the beginning of URLs in the default email_body.txt
file. A common use-case for overriding this default might be https for use on
more secure projects.

PINAX_NOTIFICATIONS_LANGUAGE_MODEL

Formerly, this setting was NOTIFICATION_LANGUAGE_MODULE

There is not set default for this setting. It allows users to specify their own
notification language.

Example model in a languages app::

from django.conf import settings

class Language(models.Model):

 user = models.ForeignKey(User)
 language = models.CharField(max_length=10, choices=settings.LANGUAGES)

Setting this value in settings.py::

PINAX_NOTIFICATIONS_LANGUAGE_MODEL = "languages.Language"

DEFAULT_FROM_EMAIL

Defaults to webmaster@localhost and is a standard Django setting [https://docs.djangoproject.com/en/1.7/ref/settings/#default-from-email].

Default e-mail address to use for various automated correspondence from
pinax.notifications.backends.email.

LANGUAGES

Defaults to a tuple of all available languages and is a
standard Django setting [https://docs.djangoproject.com/en/1.7/ref/settings/#languages].

The default for this is specifically used for things like the Django admin.
However, if you need to specify a subset of languages for your site’s front end
you can use this setting to override the default. In which case this is the
definated pattern of usage::

gettext = lambda s: s

LANGUAGES = (
 ("en", gettext("English")),
 ("fr", gettext("French")),
)

PINAX_NOTIFICATIONS_QUEUE_ALL

Formerly, this setting was NOTIFICATION_QUEUE_ALL.

It defaults to False.

By default, calling notification.send will send the notification immediately,
however, if you set this setting to True, then the default behavior of the
send method will be to queue messages in the database for sending via the
emit_notices command.

PINAX_NOTIFICATIONS_LOCK_WAIT_TIMEOUT

Formerly, this setting was NOTIFICATION_LOCK_WAIT_TIMEOUT.

It defaults to -1.

It defines how long to wait for the lock to become available. Default of -1
means to never wait for the lock to become available. This only applies when
using crontab setup to execute the emit_notices management command to send
queued messages rather than sending immediately.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/ajax-loader.gif

usage.html

 Navigation

 		
 index

 		django-notification stable documentation »

Usage

Integrating notification support into your app is a simple three-step process:

#. create your notice types
#. create your notice templates
#. send notifications

Creating Notice Types

You need to call NoticeType.create(label, display, description) once to
create the notice types for your application in the database where label is
just the internal shortname that will be used for the type, display is what
the user will see as the name of the notification type and description is a
short description.

For example::

from pinax.notifications.models import NoticeType

NoticeType.create(
 "friends_invite",
 "Invitation Received",
 "you have received an invitation"
)

Before Django-1.7, the typical way to automatically do this notice type creation
was in a management.py file for your app, attached to the syncdb signal.

Django-1.7 deprecated the post_syncdb signal, so this system needs to be changed. One possible way to do it is using a custom AppConfig.

Here is an example:

myapp/signals/handlers.py
from django.conf import settings
from django.utils.translation import ugettext_noop as _

def create_notice_types(sender, **kwargs):
 if "pinax.notifications" in settings.INSTALLED_APPS:
 from pinax.notifications.models import NoticeType
 print "Creating notices for myapp"
 NoticeType.create("friends_invite", _("Invitation Received"), _("you have received an invitation"))
 NoticeType.create("friends_accept", _("Acceptance Received"), _("an invitation you sent has been accepted"))
 else:
 print "Skipping creation of NoticeTypes as notification app not found"

Notice that the code is wrapped in a conditional clause so if
pinax-notifications is not installed, your app will proceed anyway.

Note that the display and description arguments are marked for translation by
using ugettext_noop. That will enable you to use Django’s makemessages
management command and use pinax-notifications i18n capabilities.

myapp/apps.py
from django.apps import AppConfig
from django.db.models.signals import post_migrate

from myapp.signals import handlers

class MyAppConfig(AppConfig):
 name = 'myapp'
 verbose_name = 'My App'

 def ready(self):
 post_migrate.connect(handlers.create_notice_types, sender=self)

This will call the handler to create notices after the application is migrated.

myapp/__init__.py
default_app_config = 'myapp.apps.MyAppConfig'

Notification Templates

pinax/notifications/notice_settings.html

This is a template that ships with pinax-notifications and provides an
interview for the user setting of notices that they want to recieve. It is
rendered by the sole view in pinax.notifications.views with the context that
is a list of available notice_types as well as the request.user‘s settings
for those notice types.

Backends

Each backend will have it’s own requirements in terms of template(s) it needs
as well as the context it provides in rendering them. It is possible that some
backends may not even use templates.

There are two templates that ship with pinax-notifications in support of the
single email backend that is included out of the box:

		short.txt renders to the email subject

		full.txt renders to teh email body

In addition to the extra context that is supplied via the send call in your
site or app, these templates are rendered with the following context variables:

		default_http_protocol - https if settings.PINAX_USE_SSL is True, otherwise http

		current_site - Site.objects.get_current()

		base_url - the default http protocol combined with the current site domain

		recipient - the user who is getting the notice

		sender - the value supplied to the sender kwarg of the send method (often this is not set and will be None)

		notice - display value of the notice type

These two templates that ship with pinax-notifications and live at
pinax/notifications/short.txt and pinax/notifications/full.txt are pretty
vanilla and default. You will likely want to have per notice type
customizations.

In order to do this, each of these templates should be put in a directory on
the template path called pinax/notifications/<notice_type_label>/<template_name>.

If any of these are missing, a default would be used.

Sending Notifications

There are two different ways of sending out notifications. We have support
for blocking and non-blocking methods of sending notifications. The most
simple way to send out a notification, for example::

send([to_user], "friends_invite", {"from_user": from_user})

One thing to note is that send is a proxy around either send_now or
queue. They all have the same signature::

send(users, label, extra_context)

The parameters are:

		users is an iterable of User objects to send the notification to.

		label is the label you used in the previous step to identify the notice type.

		extra_content is a dictionary to add custom context entries to the template
used to render to notification. This is optional.

send_now vs. queue vs. send

Lets first break down what each does.

send_now

This is a blocking call that will check each user for elgibility of the
notice and actually peform the send.

queue

This is a non-blocking call that will queue the call to send_now to
be executed at a later time. To later execute the call you need to use
the emit_notices management command.

send

A proxy around send_now and queue. It gets its behavior from a global
setting named PINAX_NOTIFICATIONS_QUEUE_ALL. By default it is False. This
setting is meant to help control whether you want to queue any call to send.

send also accepts now and queue keyword arguments. By default each option
is set to False to honor the global setting which is False. This enables
you to override on a per call basis whether it should call send_now or
queue.

Optional Notification Support

In case you want to use pinax-notification in your reusable app, you can wrap
the import of pinax-notification in a conditional clause that tests if it’s
installed before sending a notice. As a result your app or project still
functions without notification.

For example:

from django.conf import settings

if "notification" in settings.INSTALLED_APPS:
 from pinax.notifications import models as notification
else:
 notification = None

and then, later:

if notification:
 notification.send([to_user], "friends_invite", {"from_user": from_user})

 © Copyright .
 Created using Sphinx 1.3.1.

_static/plus.png

_static/down.png

_static/comment-bright.png

_static/up-pressed.png

_static/minus.png

_static/down-pressed.png

_static/comment-close.png

_static/file.png

_static/comment.png

changelog.html

 Navigation

 		
 index

 		django-notification stable documentation »

Change Log

BI = backward incompatible change

1.1.1

		fixed a deprecation warning

1.1

		added Russian locale

		added travis integration for tests/lints

		added created_notice_type wrapper

		cleaned up some small bugs identified by pylint

1.0

		removed unused message.py module

		removed captureas templatetag

		added notice_settings.html template

		other minor fixes and tweaks, mostly to code style

0.3

		pluggable backends

0.2.0

		BI: renamed Notice.user to Notice.recipient

		BI: renamed {{ user }} context variable in notification templates to
{{ recipient }}

		BI: added nullable Notice.sender and modified send_now and queue to take
an optional sender

		added received and sent methods taking a User instance to Notice.objects

		New default behavior: single notice view now marks unseen notices as seen

		no longer optionally depend on mailer; use django.core.mail.send_mail and
we now encourge use of Django 1.2+ for mailer support

		notifications are not sent to inactive users

		users which do not exist when sending notification are now ignored

		BI: split settings part of notices view to its own view notice_settings

0.1.5

		added support for DEFAULT_HTTP_PROTOCOL allowing https absolute URLs

 © Copyright .
 Created using Sphinx 1.3.1.

